
Aung Moe Myint Thu

Full-Stack Web Developer

SUMMARY

Aspiring and highly motivated full-stack web developer with a strong foundation in front-end and back-end

technologies. Skilled in building responsive and dynamic web applications through personal and academic

projects. Proficient in database management and experienced in using tools like Git for version control. Committed

to continuous learning and excited to contribute innovative solutions to real-world challenges while growing
within a collaborative development environment.

CONTACT INFORMATION

Location : Hmawbi, Yangon, Myanmar

Email : aungmoemyintthu@gmail.com

Phone : +959751200822
Github : https://github.com/aungmoe32

LinkedIn : https://www.linkedin.com/in/aung-moe-myint-thu-679884258

Portfolio : https://aungmoe32.github.io/

TECHNICAL SKILLS

Languages

JavaScript

Typescript
PHP

Java

SQL

mailto:aungmoemyintthu@gmail.com
https://github.com/aungmoe32
https://www.linkedin.com/in/aung-moe-myint-thu-679884258
https://aungmoe32.github.io/


Frameworks/Libraries

Laravel, Nextjs, React Native (Expo)

Laravel Filament, InertiaJs, Passport

React, Vue.js, TailwindCSS
React Query, React Hook Form, Zod

Vite, Mix

Tools

Git (Gitflow Technique)
Github

Postman

Laravel Sail
Vercel

Databases

PostgreSQL

MySQL

Others

Authentication/Authorization (JWT, OAuth)

RESTful API Design and Implementation

Web APIs, Web Push, WebRTC
Secure Notification System

Web Security (CORS, XSS, SQL Injection)

MVC design pattern

Firebase, Supabase
Stripe, Paypal payments integration

Responsive Design

PROJECTS

University Campus Management System (UCMS)

Role : Full-Stack Developer
App URL : https://ucms-orpin.vercel.app

Demo Video : YouTube

Github Repo : https://github.com/aungmoe32/ucms

Description

https://ucms-orpin.vercel.app/
https://youtu.be/AUF3MB7q9Xo?si=4Vue81lRmyFvyvyJ
https://github.com/aungmoe32/ucms


The University Campus Management System (UCMS) is a web-based application designed to simplify campus

operations, including timetable management, event notifications, and CRUD operations for students and teachers.
It ensures a responsive, efficient, and user-friendly experience for both students and teachers.

Problem Statement

Universities always face timetable problems. It would be more convenient if students could get live details (date,

location, room, etc.) about changes in class times, tutorials, assignments, and other events. The system should be
restricted to only university students (no outsiders).

Solution

I’ve developed a web app with two roles:

Student

Teacher (with administration access)

A semester consists of year, major, and term.

Students are grouped by semester.
Each semester has a timetable and subjects.

Students can view subject timings in the Dashboard’s Timetable according to their semester.

When teachers make timetable changes, students receive web push notifications immediately.

Teachers can:

Modify timetables for subjects they teach in their respective semesters
Teach multiple subjects

Easily view their specific teaching times in the Dashboard Timeline

Perform CRUD operations on resources (students, teachers, events, subjects, etc.)

Registration is closed to prevent outside access (login only).
Teachers must create student accounts.

Each Event on the Timetable is categorized by:

Title

Description
Start Date

End Date

Subject



Event type (tutorial, assignment, etc.)

Repeat (for recurrence events)
Color (based on subject color)

When a teacher modifies a semester’s timetable, students in that semester receive web push notifications.

Technologies Used

Frontend:

Framework: React, Next.js

Styling: TailwindCSS, Shadcn UI (Dark/Light mode support)
State Management: React Query

Libraries : Devextreme UI Components (For Scheduler), React Hook Form, Zod (for validation)

Backend:

Framework: Next.js API

Database: PostgreSQL with Drizzle ORM
Authentication: JWT, NextAuth

Implementations

Next.js Features: Enhances user experience by utilizing Server-Side Rendering (SSR) for faster initial loads,

Lazy Loading to optimize resource usage, and Prefetching to preload data for smooth navigation.

Loading UI with Skeletons: Improves user experience by displaying skeleton loaders while data is being

fetched, providing a visual cue during loading.
Infinite Scrolling : Automatically loads more content as users click load more button.

Debouncing Search: Delays the search input processing until the user stops typing, reducing unnecessary

API calls and improving efficiency.

Timetable Implementation: Built a timetable using DevExtreme React Scheduler for efficient scheduling and
event management.

Array Field with React Hook Form: Enables managing dynamic form fields as an array, making it easier to

handle lists of inputs (selecting multiple teaching subjects).
Zod Validation: Ensures consistent form validation on both client and server, providing type-safe and

schema-based validation.

NextAuth with JWT: Handles authentication securely using JWT for stateless session management in

Next.js.
Vercel Edge Middleware: Optimizes performance by running custom logic at the edge, allowing for faster

response times.

Challenges Overcome

Recurring Event System: Built a system to manage recurring events with flexible schedules and optimized

database storage for scalability.
Performance Optimization in Next.js: Implemented lazy loading, SSR, and prefetching to improve page load

speed and navigation for dynamic content.



React Query Integration: Used React Query for efficient data fetching, caching, and synchronization,

simplifying state management and improving user experience.
Database Query Optimization: Optimized database queries for complex timetable relationships.

Web Push Notifications for iOS: Added push notifications for iOS devices.

Optimized APIs: Created APIs with sorting, filtering, and pagination for efficient data retrieval.

React Hook Form: Used React Hook Form to manage forms and validation efficiently.
GitFlow: Used GitFlow for managing branches during development, ensuring organized workflows for

feature development, releases, and bug fixes.

Future additions

Notification Log : A feature that will track and store all notifications sent within UCMS, allowing easy access

to past notifications for better management.
Exam Results and Grades : A feature that will organize and display exam results and grades based on

academic years, allowing both students and teachers to easily track performance over multiple years.

Passport OAuth Server

The Passport-Server project is an OAuth 2.0 authentication server built with Laravel Passport and Laravel

Filament, providing secure login and token management for client applications like Passport-Client.

Demo

Explore the demo: YouTube (Timestamps on description)

passport server : https://passport-server.fly.dev/
passport client : https://passport-client.fly.dev/

reference

Source Code

Github repo : https://github.com/aungmoe32/passport-server

Technologies

Laravel

https://youtu.be/I_8JTz8vass?si=7bpvZc2AQ1d8m_Wc
https://passport-server.fly.dev/
https://passport-client.fly.dev/
https://medium.com/@vidura.prasangana16/what-is-oauth-2-0-476aabded278
https://github.com/aungmoe32/passport-server


Passport

Laravel Filament

Workflow Overview

1. Login Button Click (Passport-Client):

User clicks the “Login as Passport-Server” button on the Passport-Client login page.
The client redirects the user to the Passport-Server’s authorization endpoint, including a query string

with the client ID, redirect URI, and scope.

2. Authenticate on Passport-Server:

If the user is not already logged in on Passport-Server, they are prompted to log in (e.g., email and

password form).
Once logged in, Passport-Server asks for user consent (if applicable) to share their profile with

Passport-Client.

3. Authorization Code Issued:

Upon successful login and consent, Passport-Server redirects the user back to the Passport-Client’s

redirect URI, along with an authorization code.

4. Authorization Code Exchanged for Token:

Passport-Client sends the authorization code, along with its client ID and client secret, to Passport-

Server’s token endpoint.

If valid, Passport-Server responds with an access token (and optionally a refresh token).

5. User Logged In:

Passport-Client uses the access token to fetch the user profile from Passport-Server’s user info
endpoint.

Passport-Client creates a session for the user, completing the login process.

Features

On Passport-Server:

OAuth 2.0 authentication services for secure login.

A Posts section for users to write and manage their content.

A Dashboard to manage users, clients, and tokens.
Ability to revoke client tokens for enhanced security and control.

On Passport-Client:

Integration with Passport-Server for seamless user authentication.

A Products section for users to manage product listings.

Implementations



Laravel Filament : Using Laravel Filament to provide an elegant admin interface for managing OAuth clients,

users, and tokens.

On Passport-Server:

Authorization Endpoint: Validates the client, authenticates the user, and issues an authorization code.
Token Endpoint: Exchanges the authorization code for an access token.

User Info Endpoint: Provides user details when queried with a valid access token.

On Passport-Client:

Login Flow: Initiates the OAuth flow by redirecting to Passport-Server.

Callback Handling:
Processes the authorization code and retrieves the access token.

Uses the token to fetch user details and establish a session.

Challenges

1. Token Security: Ensuring the secure storage and handling of tokens on both server and client sides.

2. OAuth Flow Complexity: Implementing and debugging the complete OAuth 2.0 Authorization Code Grant
flow.

3. User Experience: Maintaining a seamless user experience during redirections between Passport-Client and

Passport-Server.

4. Token Revocation: Properly handling token revocation and ensuring affected sessions are invalidated.
5. Admin Panel Customization: Adapting Laravel Filament for specialized management tasks like token

monitoring and user actions.

Chaz

A feature-rich react native chat application designed for seamless and real-time communication. The app supports
multiple functionalities such as instant messaging, video calling, and personalized profiles, providing a user-

friendly and interactive experience.



Source Code

Github repo : https://github.com/aungmoe32/Chaz

Demo Video

YouTube

Download apk

https://drive.google.com/file/d/1LmfkDXhVcBwL5nnau9K6_9coyEnO6IC0/view?usp=sharing

Technologies Used

Frameworks and Libraries :

React Native

Expo
Nativewind

React Navigation

Expo Router

Lottie (for animations)
Expo Packages (various)

Typescript

Backend and Database: Firebase services, Firestore

Third-Party Services: VideoSDK

Development Tools:

Expo Go

https://github.com/aungmoe32/Chaz
https://youtu.be/eAF7teXrRVw?si=sK1NOlFwvMRUW4NU
https://drive.google.com/file/d/1LmfkDXhVcBwL5nnau9K6_9coyEnO6IC0/view?usp=sharing


Features

Google Authentication
Password Reset

Push Notifications

Video And Audio Calls
User Profiles

Note : Only available for android currently

Implementations

Navigation: Implemented using Expo Router’s tab and stack navigation for seamless routing.

Video and Audio Calls: Enabled using VideoSDK for real-time communication.

Authentication: Implemented email and Google authentication using Firebase Auth.

Database: Used Firestore for real-time, cloud-based data storage.
Password Reset: Built a forgot password feature using Firebase Auth.

Push Notifications: Implemented using Expo Push Notifications with a Vercel serverless API for real-time

updates.
Animations: Used Lottie for loading animations.

Development: Used Expo Go for development on mobile devices.

Challenges

Build Process: Faced challenges with EAS builds and local build configurations.

Security: Used Expo Secure Store for environment variables.

Push Notification Challenges: First time using Expo Push Notifications, faced learning curve in setup and
configuration.

Notification System: Faced challenges implementing a secure notification system using Expo Push

Notifications.
Responsive Design: Ensured responsive design across devices for user experience.

Secure Push Notification System



Bob Vercel Api Expo Noti Server John

When Bob sends
a message to John

Get ExpoPushTokens of
John's devices

with roomId and msgId

(POST request)(POST request)
roomId, msgIdroomId, msgId

(POST request)(POST request)
ExpoPushTokens, msg infoExpoPushTokens, msg info

Push notificationsPush notifications
to John devicesto John devices

Bob Vercel Api Expo Noti Server John

LMS

A comprehensive Learning Management System (LMS) built to simplify online learning and course management.

Source Code

Github repo : https://github.com/aungmoe32/lms

Demo

Explore the demo: YouTube.

Tech Stack

Backend: Laravel 8

https://github.com/aungmoe32/lms
https://youtu.be/a6o9gL58PYc?si=dXAeuJTCtZ6jkFf_


Frontend: Vue 2 with Vuetify for UI

State Management: Vuex
Routing: Vue Router

API Security: Laravel Sanctum

Features

User Authentication: Login and register functionality with role-based permissions.

Course Management:

Courses have sections and lectures with support for video, audio, text, and documents.
Includes filtering and searching by categories, price, and levels.

User Roles:

Student: Enroll in courses, rate/comment, and learn from curriculums.
Instructor: CRUD operations on courses and sections, and monetize courses.

Admin: Manage users, categories, and roles.

Course Lecture File Support:

Video: MP4, QuickTime
Audio: MP3, WAV, M4A

Document: PDF

Ratings & Comments: Students can rate and review courses.
Payment Integration: Uses PayPal sandbox for course payments.

Implementations

SPA with Laravel Sanctum API: Built Vue.js SPA connected to a Laravel Sanctum API backend for secure

authentication and data handling.

Vuetify for UI and Responsive Design: Built with Vuetify to create UI components like curriculums and

tables, ensuring a clean and responsive design for all devices.

State Management in Vue: Implemented state management using Vuex, allowing centralized management
of application state.

Role Permissions:

Students, Instructors, and Admins have distinct access levels.

Laravel Eloquent Polymorphic Relationship for Course Lecture Types: Implemented in Laravel Eloquent

that links various lecture content types (video, audio, document, text) to a course lecture.

API Protection with Middlewares: Secured the API using Laravel Auth middlewares and implemented

custom middleware such as IsSubscribed  to ensure users have an active subscription and IsCourseOwner
to verify course ownership before allowing access to specific routes.

Laravel Sanctum Session-Based Authentication: Using Laravel Sanctum’s session-based cookie

authentication, which provides CSRF protection and secures credentials against XSS attacks.

Eloquent Events for Relationship Models: I used Laravel Eloquent events to handle updates and deletions
of related models, ensuring the integrity and proper management of relationships.



PayPal Integration: Integrated PayPal using its sandbox environment for testing payments, allowing users to

make secure transactions for courses within the application.

Challenges

State Management in Vue: Managing the application’s state efficiently with Vuex.
Responsive UI: Ensuring that the user interface works well across different screen sizes and devices.

Optimized Eloquent Relationships: Improving database queries and relationships in Laravel’s Eloquent

ORM for better performance.

PayPal Integration: Integrating PayPal for payment processing, including handling transactions and testing
with the sandbox environment.

PAM (Tiny PHP MVC Framework)

A custom lightweight PHP MVC framework inspired by Laravel, designed to implement clean architecture

principles and simplify web development.

Key Features

Database & Models: Integrated Eloquent ORM for seamless database operations.

Routing System: Dynamic routing with middleware support and controller binding.
Templating: Implemented Blade templating engine for rendering dynamic views.

Session Management: Secure session handling and state management.

File Storage: Centralized file system with configuration-driven storage capabilities.

Helper Functions: Utilities like view() , router() , storage()  for efficient coding.

Implementation Highlights

Bootstrap Process: Developed a centralized bootstrap/app.php  file to handle application loading,
including environment variables and instance bootstrapping.

Middleware Pipeline: Built a global and route-specific middleware pipeline to filter and validate requests

before routing them.
Configuration Management: Centralized configuration files for database, session, and file handling for

enhanced maintainability.

Helper Utilities: Created custom helper functions for common tasks, streamlining the developer experience.

Outcome

Demonstrated PAM’s capabilities by developing a fully functional Todo List App. The project showcased the

framework’s ability to handle routing, database operations, session management, and Blade templating with ease.

Demo : YouTube
Github Repo : https://github.com/aungmoe32/pam

Technologies Used

https://youtu.be/sj7AaQjmhCY?si=4nTvnt8kY7Mc5WtL
https://github.com/aungmoe32/pam


PHP, Illuminate Components (Eloquent, Blade, Filesystem), Composer

Sweepers

Sweepers is a waste management web app designed to encourage eco-friendly practices by integrating AI-

powered hardware with a user-friendly platform. It features a smart bin equipped with a camera sensor that
identifies waste types and weights, generating coupons redeemable for reward points. These points can be

exchanged for cash, promoting sustainable waste disposal. The app also includes educational waste articles, a

chatbot for assistance, and responsive design, making it accessible across devices.

This is the project that competed in the Hackathon at the 100th Anniversary Engineering Festival at NSPU.

Source Code

Github repo : https://github.com/aungmoe32/sweepers

Demo

App url : https://hack-ivory.vercel.app/
Video : YouTube

Features

User registration and mock authentication.

AI-powered hardware bin with a camera sensor for waste detection by type and weight.

Generation of 4-digit coupons on the bin’s LCD screen.

Redeem coupons for reward points, exchangeable for cash, based on waste type and weight.
Integrated chatbot for user assistance.

Waste articles section for educational content.

User profile editing.
Reward exchange form for using coupons.

Fully responsive design for seamless usage on all devices.

Tech Stack

https://github.com/aungmoe32/sweepers
https://hack-ivory.vercel.app/
https://youtu.be/e18QLYA0MGk?si=6uWULdFOHNGgcLjT


Frontend Framework: Next.js

UI Components: Shadcn
Styling: TailwindCSS

Implementations

AI-powered waste type and weight detection using a hardware-integrated bin.

Real-time coupon generation and validation on the app.

Points calculation logic based on waste properties.

Responsive UI/UX for cross-platform compatibility.
Chatbot integration for enhanced user interaction.

Mock authentication for demonstration and testing.

Hobbies & Interests

Exploring music through fingerstyle guitar.

Enjoying social gaming experiences with friends.
Building meaningful connections by meeting new people.

Conclusion

“Looking forward to contributing my skills and learning new technologies in a professional environment.”


